A new two-dimensional carbon allotrope: Semiconducting diamane film synthesized

Pressure-induced graphene-diamane transition.

Atomically thin diamond, also called diamane, is a two-dimensional carbon allotrope and has attracted considerable scientific interest due to its potential physical properties. However, previous studies suggest that atomically thin diamond films are not achievable in a pristine state because diamonds possess a three-dimensional crystalline structure and would lack chemical stability when thinned down to the thickness of diamond's unit cell due to the dangling sp3 bonds. Chemical functionalization of the surface carbons with specific chemical groups was considered necessary to stabilize the two-dimensional structure, such as surface hydrogenation or fluorination, and various substrates have also been used in these synthesizing attempts. But all of these attempts change the composition of diamond films, that is to say, the successful synthesis of a pristine diamane has up until now not been achieved.

Regulating the phase transition process of carbon materials under high pressure and high temperature is always a straightforward method for achieving diamondization. Here, a team of scientists led by Drs. Feng Ke and Bin Chen from HPSTAR (the Center for High Pressure Science and Technology Advanced Research) used this direct approach, diamondization of mechanically exfoliated few-layer graphene via compression, to synthesize the long-sought-after diamane film. The study is published in Nano Letters.

The diamondization process is usually accompanied by an opening of an energy gap and a dramatic resistance increase due to the sp2-sp3 rehybridization between carbon atoms. "The in-situ electrical transport measurements of few-layer graphene are difficult to carry out under high pressure," said Feng Ke. "However, using our recently developed photolithography-based microwiring technique to prepare film electrodes on a diamond surface for resistance measurements, we are able to study the pressure-induced sp2-sp3 diamondization transition of mechanically exfoliated graphene with layer thickness ranging from 12- to bilayer at room temperature."

Their studies demonstrate that pristine h-diamane could be synthesized by compressing trilayer and thicker graphene to above 20 GPa at room temperature, which once synthesized could be preserved to about 1.0 GPa upon decompression. "The optical absorption reveals that h-diamane has an energy gap of 2.8 ± 0.3 eV, and further band structure calculations confirm an indirect band gap of 2.7-2.9 eV," explained the co-frist-author Lingkong Zhang, a Ph.D. student at HPSTAR. "Compared to gapless graphene, semiconducting h-diamane offers exciting possibilities for carbon-based electronic devices."

The XRD measurements have shown that the few-layer graphene to h-diamane transition is a gradual structural transition, which helps to understand the continuous resistance increase and absorbance decrease in trilayer and thicker graphene with pressure above the transition pressure. Theoretical calculations indicate that an oriented h-diamane is energetically stable and has a lower enthalpy than its few-layer graphene precursor above the transition pressure.

"Like the discovery of graphene, carbon nanotubes, fullerenes, and other novel carbon allotropes, the realization of a pristine diamane represents another exciting achievement in materials science," added Dr. Bin Chen, "Thermal treatment at high pressure may be helpful to preserve a pristine h-diamane to ambient pressure, as suggested from the high-temperature and high-pressure method to synthesize a pressure quenchable h-diamond. The challenges still remain to achieve the preservation and industrial applications of diamane."


MIS-ASIA is an online content marketing platform that has a large number of visitors worldwide. It is considered to be the leading IT, mechanical, chemical, and nanomaterial information distributor in the Asia-Pacific region. The MIS-ASIA website provides high-quality articles and news on digital information technology, mechanical technology, nanotechnology, biology and science for scientists, engineers and industry experts, machinery suppliers and buyers, chemical suppliers and laboratories. If you need advertising and posting service, or you need to start sponsorship, please contact us.

Inquery us

Our Latest Products

High Purity Graphite Powder Flake Graphite C Powder CAS 7782-42-5

Item No.: Tr-C High purity graphite powder flake graphite is natural crystalline graphite, which looks like fish phosphate, belongs to the hexagonal crystal system, and has good high-temperature resistance, electrical conductivity.Purity: 99…

Chromium Chip Chromium Sheet Chromium Flake CAS 7440-47-3

Item No.: Tr-Cr02 Chrome chip hard and brittle steel gray bright metal with hardness like corundum and lower melting than platinumPurity>99.95%Product name: chromium flake…

Succinate monoglycerides

About Succinate monoglycerides:Milky powder, insoluble in cold water, can be dispersed in hot water and hot grease.TRUNNANO is a trusted global Succinate monoglyceride. Feel free to send an inquiry to...…

0086-0379-64280201 brad@ihpa.net skype whatsapp