Subscribe / Unsubscribe Enewsletters | Login | Register

Pencil Banner

NASA, Google reveal quantum computing leap

Martyn Williams | Dec. 10, 2015
In an experiment, a quantum computer outperformed a conventional machine by 100 million times.

D-Wave 2X quantum computer
The D-Wave 2X quantum computer at NASA's Advanced Supercomputer Facility in Silicon Valley on Dec. 8, 2015.
Credit: Martyn Williams

The black box sitting at the heart of NASA's Advanced Supercomputing facility in Silicon Valley isn't much to look at. The size of a garden shed, it's smaller than a conventional supercomputer, but inside something quite impressive is happening.

The box is a D-Wave 2X quantum computer, one of the most advanced examples yet of a new type of computer based on quantum mechanics, which can theoretically be used to solve complex problems in seconds rather than years.

Quantum computers rely on fundamentally different principles to today's computers, in which each bit represents either a zero or a one. In quantum computing, each bit can be both a zero and a one simultaneously. So while three conventional bits can represent any of eight values (2^3), three qubits, as they're called, can represent all eight values at once. That means calculations can theoretically be performed at much higher speeds.

Research is still at the early stages and commercial use could be decades away, but a team of NASA and Google engineers announced on Tuesday that the D-Wave computer, running an optimization problem, came up with an answer 100 million times faster than a conventional computer with a single core processor.

"What a D-Wave machine does in a second" would take a conventional computer with a single core "10,000 years" to perform a similar task, said Hartmut Neven, director of engineering at Google, during a news conference held to announce the result.

Hartmut Neven 
Hartmut Neven, director of engineering at Google, speaks at a news conference at NASA's Advanced Supercomputer Facility in Silicon Valley on Dec. 8, 2015. Credit: Martyn Williams

The researchers see it as a promising step, but it comes with some caveats -- not the least of which is that the computer was engineered for the specific optimization task it was tested with.

An optimization problem is one where there are many possible ways to arrive at a desired outcome. The classic example is a traveling salesman who has to find the most efficient route to visit a number of towns. As more towns are added, the number of possible routes increases, and soon there are too many for a conventional computer to handle in a reasonable amount of time.

Similar problems exist on space missions and in air traffic control modeling -- both areas to which NASA devotes significant computing resources.

The problem used to test the D-Wave computer had nearly 1,000 such variables.

 

1  2  Next Page 

Sign up for MIS Asia eNewsletters.