Subscribe / Unsubscribe Enewsletters | Login | Register

Pencil Banner

Intel releases key details of its Atom redesign

Michael Brown | May 7, 2013
Intel revealed key details of its redesigned Atom microprocessor product line this morning. Code-named Silvermont, this all-new microarchitecture marks the first time that Intel will use its 22nm manufacturing process and 3D Tri-gate transistor technology to build a system-on-a-chip (SoC) platform for devices ranging from smartphones and tablets to microservers.

Silvermont will also deliver a number of new instructions aimed at delivering better security and higher performance, including support for 256-bit AES encryption and decryption, a new random number generator that can be used to render software more resistant to attack, new virtual machine functions that security software can tap, 47 new instructions for processes such as media acceleration and memory access, and seven new instructions for processing large data sets.

Improvements to Silvermont's burst mode also promise to deliver better performance. In existing Atom cores, the CPU can temporarily operate at a higher clock frequency (known as burst mode) only if there is thermal headroom. With Silvermont, burst frequency is managed in hardware and is based on thermal, electrical, and power-delivery constraints. What's more, power can be shared among the core and other system components, such as an integrated graphics processor.

If one core can handle the current workload, for instance, the second core can be put into a very low-power state and most of its electrical power can be shunted to the first core to enable it to operate at a higher frequency. By the same token, if both cores are needed, but the graphics processor isn't, the GPU can be powered down so that the CPU cores can run faster. Silvermont also supports a dynamic burst mode where both the cores and the GPU can briefly run at higher frequencies (provided they don't exceed thermal constraints).

Comparing Silvermont to tablet SoCs from four unnamed competitors, Intel claims that its part will deliver twice the performance while consuming 4.3 times less power. What's more, Intel declared its dual-core Silvermont SoC to be superior to its (again, unnamed) competitors' quad-core parts, delivering both higher performance and better power efficiency.

If Intel delivers on its promises, it could eventually come to dominate the market for smartphone and tablet CPUs in the same fashion that it rules the PC market. The fact that Intel owns its own fabrication facilities and the intellectual property for manufacturing 3D transistors will certainly help. But the company must first deliver the goods and then convince device manufacturers to use them. The competition, meanwhile, isn't going to stand still and wait for Intel to catch up.


Previous Page  1  2 

Sign up for MIS Asia eNewsletters.