GaSe has been used as a semiconductor and a far-infrared conversion material at 14-31 THz and above. GaSe also finds applications in highly-efficient solar cells and battery technology. GaSe is a non-linear optical material with great potential in non-linear optical devices and THz generation. Recently, two-dimensional (2D) GaSe materials have drawn the increasing attention of researchers because of their superior performance in optical and electrical aspects. Hu et al. Reported a photodetector based on few-layer GaSe materials for the first time, with a responsivity of 2.8 A/W under 254 nm illumination and a corresponding quantum efficiency of 1367%, which is much higher than MoS2 and other two-dimensional semiconductor materials, such as graphene. Since then, many efforts have been made to strengthen the performance of 2D GaSe devices by changing the device structure or processing. Meanwhile, obtaining high-quality 2D GaSe materials is an important way to improve device performance. GaSe is often prepared by mechanical exfoliation from bulk GaSe or vapor phase transport techniques. Lei et al. The reported vapor phase transport method to grow GaSe atomic layers for the first time and the photoconductivity measurements show an on/off ratio of 103. GaSe nanoplates epitaxial increase on transparent flexible mica substrates showed photo-responsivity of 0.6 A/W. Recently, Xiong et al. Succeed in synthesizing GaSe nanoribbons through one step thermal deposition process. The GaSe nanoribbon-based photodetectors showed an on/off ratio of 103, a field-effect differential mobility of 0.03 cm2 V−1 s−1, and the response time was less than 0.3 s. Generally, those methods use Ga/Ga2Se3 or Ga2Se3 as source materials, which may result in heterogeneous or non-stoichiometric composition and morphology. These introduced impurities and defects will finally deteriorate the performance of the devices. Mechanical exfoliation is a promising method where high quality can be inherited from the bulk crystal, and large-scale 2D GaSe can be obtained. If you are looking for high quality, high purity and cost-effective GaSe, or if you require the latest price of GaSe, please feel free to email contact mis-asia.