Scientists Reveal New Synthesis Mechanism Of Hexagonal Boron Nitride

The team of Wu Tianru, an associate researcher of the Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences and the team of Professor Yuan Qinghong of East China Normal University, based on in-situ synthesis, characterization research and first-principles calculation methods, proposed a high-quality multi-layer hexagonal iron-boron (Fe2B) alloy surface A new mechanism of boron nitride (h-BN) atom vacancy assisted growth. Related research results were recently published online in "Physical Chemistry Letters".
With the advantages of atomic level flat surface, no dangling bonds, high thermal conductivity and good physical and chemical stability, h-BN has become a potential dielectric substrate and packaging material for two-dimensional crystal devices. Due to the slow development of advanced synthesis technology of h-BN, the lack of research on the growth mechanism of traditional methods limits the controllable synthesis and practical application of large-size, high-quality h-BN.



To this end, Wu Tianru's team realized high-quality h-BN controllable preparation based on the Fe2B alloy system, and analyzed the distribution of B atoms and N atoms in the Fe2B superficial layer during the synthesis of h-BN through rapid cooling quenching technology combined with time-of-flight secondary ion mass spectrometry. Yuan Qinghong’s team used first-principles calculations to study the growth mechanism of h-BN on Fe2B surface and proposed a vacancy-assisted synthesis mechanism for h-BN on Fe2B surface. The researchers found that the formation of B-N dimers formed a large number of B vacancies on the surface of the alloy, which greatly promoted the migration of B and N atoms. The diffusion of B and N atoms in the Fe2B substrate only needs to overcome the energy barrier of less than 1.5 eV, so that N atoms are dissolved in a large amount near the catalytic surface.
At the same time, by calculating and fitting the formation energy and Gibbs free energy of B-N clusters of different sizes, the study found that the h-BN nucleation barrier on Fe2B surface is about 2 eV. Therefore, it is possible to synthesize h-BN at a relatively low temperature (700 K).

Inquery us

Our Latest Products

Nitinol Nickel Titanium Ni-Ti Alloy Powder

Item No.: Tr-nitinol Nitinol Titanium powder is a shape memory alloy, which is a special alloy that can automatically restore its plastic deformation to its original shape at a certain temperature and has good plasticity.Purity:99.9%Particle…

Titanium Silicide TiSi2 Powder CAS 12039-83-7

Item No.: Tr-TiSi2 Titanium silicide is known as titanium disilicide, its chemical formula TiSi2 powder. Titanium silicide is a chemical substance with a molecular weight of 116.1333.Purity: 99%Particle Size: 5-10um…

TR01 525 grade white cement

TR01 525 white cement is a green and environmentally friendly product with high strength and no radioactivity in the early stage. The product has high whiteness, high strength, low alkalinity, good stability, and bright and bright color.…

0086-0379-64280201 skype whatsapp